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Time-Displaced Correlation Functions in an Infinite 
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Time-displaced conditional distribution functions are calculated for an 
infinite, one-dimensional mixture of equal-mass hard rods of different 
diameters. The kinetic equation that describes the time dependence of the 
one-particle total distribution function is found to be non-Markovian, in 
contrast with the situation in systems of identical rods. The correlation 
function does not contain any isolated damped oscillation, except for sys- 
tems of equal-diameter rods with discrete velocities. Thus, we generalize 
the one-component results of Lebowitz, Percus, and Sykes, removing some 
nontypical features of that system. 
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1. INTRODUCTION 

Some aspects of the complicated dynamical  behavior of real many-part icle 

systems can, one hopes, be unders tood from the analysis of simple models. 

In  the absence of exactly solvable systems of higher complexity, some effort 
has been put  into the study of a one-dimensional  system of hard rods. 

Fol lowing Jepsen's work (1) on the velocity autocorrela t ion function,  Lebo- 

witz, Percus, and  Sykes (LPS) (2'a~ obtained the exact t ime-dependent  self- 
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[f~(r, v; t, v')] and total I f(r ,  v; t, v')] one-particle conditional distributions 
for this system. These time-displaced distribution functions (tdf) are directly 
related to the van Hove correlation functions (~ whose Laplace-Fourier 
transform is measured in neutron and X-ray scattering experiments on fluids. 
LPS also formulated and investigated the kinetic equations governing the 
time evolution of the tdf. This led them to the derivation of approximate 
kinetic equations for time-dependent correlation functions of three-dimen- 
sional fluid systems (8~ whose solutions are in qualitative agreement with 
experimental results. Recently these equations have been developed further 
to yield semiquantitative agreement with computer results. (9~ 

In this paper we shall derive the exact time-dependent correlation 
functions for an infinite, one-dimensional mixture of hard-rod particles of 
equal masses with densities po and diameters d~, cr = 1 ..... S. The presence 
of varying diameters removes some of the peculiarly simple and nontypical 
features of the one-component hard-rod system. The dissipation of informa- 
tion is now more complex, possibly affecting also the ergodic behavior of the 
system: e.g., while the one-component infinite system can be shown (under 
some mild restrictions) to be Bernoulli, (5'6~ the mixture is so far known only 
to be a K-system. (7~ In this, more general, setup the functionf(r ,  v; t, v') does 
not obey a Markovian kinetic equation, in contrast with the (surprising) 
Markovian behavior of this function in a system of rods of equal diameters. (3~ 

2. T H E  D Y N A M I C A L  S Y S T E M  

The effect of a collision of equal-mass hard rods is merely an exchange 
of the velocities. One may therefore discuss the dynamics by focusing atten- 
tion on the "velocity pulses," which move at constant velocity except for 
moments of collision, when they jump from one rod to another. To be 
specific, we shall refer to the midpoint as the position of a rod and that of the 
corresponding velocity pulse. 

The self-distribution function f~(q, v, t Iq, v, i) is the probability density, 
in an equilibrium state, of finding at the time t a " test  particle" at the position 
q with velocity v, given that this particle had the position and velocity (q, ~) 
at the time L While in systems with more general interactions f~ will also 
depend on ~r, a little thought shows (cf. also Refs. 1 and 2) that it does not in 
our system. The motion of a single particle through the system, in an equi- 
librium state, is affected by the size of the diameters only through the reduced 
density: n = p/(1 - p (d ) )  (which, together with the velocity distribution, 
determines the rate of collisions). Here (d~ = ~ p~da/p is the average of the 
diameters and p = ~ p~ is the density. It follows therefore that the distribu- 
tion function is the same as the one given in Refs. 1 and 2 for a system of 
equal rods. 
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A related quantity, whose dependence on the distribution of the diam- 
eters is less trivial, is the self-distribution function of a velocity pulse. We 
shall denote it by g(q, v, ~, t tq, ~, ~, 5), using a for the one-partMe variable 
that determines the size of its diameter. For a given velocity pulse a will 
refer to the particle on which the pulse is "riding" at the given time. We 
shall compute this function in the next section. 

Another quantity that we compute is the total distribution function 
f(q, v, a, t 177, O, ~, / ) - - the  conditional probability density, in an equilibrium 
state, of finding, at the time t, a particle with position, velocity, and diameter 
(q, v, ~) given that at the time i there is a particle with the phase (~, e, ~). 

For the precise formulation of the problem we use the following notation. 
17 --- ~ x I~ x S is the one-particle phase space whose points represent 

values of (q, v, a). The number of elements of S equals the number of different 
components of the mixture. 

f~, the phase space of the system in the thermodynamic (infinite-size) 
limit, is the space of configurations, i.e,, of equivalence classes, modulo 
permutations, of sequences {(q~, v~, ~ )}~  with (q~, v~, as) ~ P, Vi e Z. 

The local symmetric observables are represented by functions on f~ that 
depend (measurably) on the phases (positions, velocities, and diameters) of 
only those particles that occupy some specified bounded region of ~. Examples 
of such observables are the numbers of particles of different species in [0, 1 ]. 
(These observables generate a "quasilocal'" algebra.) 

States of the infinite system are given by probability measures on 
(f~, X) and expectation values of observables are obtained by integration. 
Equilibrium phenomena are described by Gibbs (equilibrium) states which 
are the proper limits of finite-volume grand canonical ensembles, a2~ 

Since the collection of velocities is unchanged by the collisions, our 
system certainly admits additional states that are invariant under the time 
evolution and space translations and have good clustering properties. In 
these states the distribution of the particles on the line, parametrized by the 
densities p~, is the same as in the corresponding equilibrium states. The veloci- 
ties of the particles are independently distributed with a probability distribu- 
tion of density h(v). For Gibbs states h(v) = [exp(-~mv2/2)l/(2rr/,Sm) lt2. 

We shall now compute the time-displaced correlations for states of the 
above type. Our results will also apply, with some straightforward modifica- 
tions, to systems in which the diameters vary continuously. 

3. THE PULSE SELF-DISTRIBUTION FUNCTION 

3.1. Relevant Phase Space 

The phase spac e that describes the system with a singled-out "test"  
velocity pulse is P x D.. We are interested in states that are initially described 



182 Michael Aizenman, Joel Lebowitz, and Joaquin Marro 

by some probability measure d/~ on F (which describes the state of the test 
particle) and have, for any given (~, ~, v) E F, the rest of the system distributed 
by the equilibrium conditional probability on f2, i.e., the rest of the system is 
in equilibrium in an external potential created by the test particle at q. We 
shall call these uncorrelated states. 

Starting from an uncorrelated state, the distribution of the test particle 
at time t depends linearly on its initial distribution dtz. The pulse self-distribu- 
tion function g(q, v, g, t [~, g, v, i = 0), which was defined in the previous 
section, is the kernel of the transformation which corresponds to the time t. 

3.2. Reduced Descr ipt ion 

By the spatial and temporal invariance of the infinite-volume equilib- 
rium states of our system we have 

g(q, v, ~, t[q, ~, ~, i) = g(q - ~l, v, a, t - il 0, 9, ~, 0) (1) 

To compute g(q, v, cr, t 10, g, ~, 0), it is convenient to use the reduced 
description for the configurations in f2. To define it, we label the particles 
at the time ~ = 0 so that q~ ~< qj for i < j and q_l < 0 ~< q0. The reduced 
distance between particles is the length of space between them which is not 
covered by any rod. The reduced position of the nth particle x,  is defined by: 

(1) Xo = qo. 
(2) x,  - xo is the reduced distance between the nth and zeroth particles. 

It is now easy to characterize, for the uncorrelated states, the conditional 
distribution on f~ given that there is a particle at the origin with (~ = 0, ~, v). 
The corresponding configurations, viewed as countable collections of points 
in I', are distributed independently in disjoint regions of I'. They all include 
the point (0, ~, V) and the number of other points in any region has the 
Poisson distribution whose mean has the density h(v)n,, with 

n ~ =  p ~ / ( 1 -  ~ p ~ d ~ )  (2) 

We define the functions D~ on f~ by 

q~ = x~ + D~, Vn E ~ (3) 

Using {D,}, we now define the reduced positions at any time t, {x,(t)}, by the 
above equation with q, replaced by q~(t). 

The resulting time evolution looks, in the reduced description, like the 
evolution of a system of equal-mass, impenetrable point particles, which 
carry an additional degree of freedom - g .  (See Fig. 1.) The reader is 
cautioned, however, that the labeling of particles cannot be done in a time- 
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Fig. 1. (a) Space-time trajectories of the particles. (b) Space-time trajectories in the 
reduced description. 
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invariant method, which poses some difficulties in using this representation. 
(See Ref. 6.) 

3.3. Pulse S e l f - D i s t r i b u t i o n  Funct ion 

It is easy to see that the Fourier transform, in q, ofg(q,  v, ~, t let = 0, ~, ~, 
i = 0) is 

3(v - ~) E(X o exp[ikq(t)]l~, ~) ~ 8(v - ~) ~,(k, or, t lo , ~) (4) 

Here x~(t) is the characteristic function that corresponds to the specified 
value of the parameter ~ of the test pulse at the time t and q(t) is its position. 
E(.  ]~, 8) denotes the expectation value in the uncorrelated state in which the 
test pulse is at (q = 0, ~, 8). 

Clearly, q(t) = ~t + DM(t), where M ( t )  is the index of the particle on 
which the test pulse is located at the time t. We may compute the above 
expectation by first conditioning on M, thus: 

E(X~ exp[ikq(t)]lg, ~) 

= [exp(ikft)]E(E(xo(t)  exp[ikDM(t)]lM(t), ~, 8)[g, ~) (5) 

Now 

~ ao/2 + al +. . .  + aM-1 + aM/2, M > 0 

DM = 4 0 ,  M =  0 (6) 

L - ( a o / 2 + a - 1  + " ' +  aM+l +aM~2), M <  0 

with an = do,, the diameter of the nth particle. 
It follows from the above characterization of the uncorrelated states that 

E(xo(t ) exp[ikDM(t)]lM(t), ~, ~) 

[(polO) exp[ik(do + d~)/2] exp{(M - 1)[a(k) + ib(k)]}, M > 0 
! 

= ~8~,~, M = 0 
! 

[.(Po/O) exp[ - i k (do  + d~)/2] exp{(IM[ - 1)[a(k) - ib(k)]}, M < 0 

= f ( M ,  k, a, ~) (7) 

with a(.)  and b(.) defined by 

e a(k)+ib(k) = (eikd> -~ ~ (po/p)e ikd~ (8) 

M ( t )  equals the total number of collisions undergone by the test pulse 
in the time interval [0, t ], counting as positive (negative) those with pulses to 
its right (left). Thus M = M+ - M_ ,  with M~ being the numbers of pulses, 
in the reduced description, in the regions 

{(q,v,a) e F t q  > O, q +  t ( v -  ~) < 0} (9) 
(<) (>) 

These are independently distributed with Poisson distributions. 
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Using Fourier transforms, we find that 

1 (2~ 
E ( f ( M ,  k, or, ~)]g, ~) = ~ Jo dr f ( r ,  k, ~, ~)E(exp[ir(M+ - M-)I[~) (10) 

with 

f ( r ,  k, o, ~) = ~ [exp(-ilr)]f(l,  k, ~, ~) 
Z= - - Q o  

= a ( ~ ,  ~) 

~ {  exp{i[k(d~ + de,)~2- r]} } 
+ I ~ e x ~ )  ~-/--~k) - r]} + comp. conj. (11) 

The contributions from M+ and M_ factorize and we obtain, using (4), 

1 f]= ~(k, ~, t[9, ~) = [exp(iktO] ~ d r f ( r ,  k, ~, Y)F(nt, ~, 9) (12) 

with 

F(nt, r, v) = E(exp[ir(M+ - M_)][v) = exp{-nltlb(v)(1 - cos ~-) 

- i sgn(t)(v - Vo) sin r 

t*(v = J" du h(u)lu - v I (13) 

Vo = f du h(u)u, Vo = 0 for h(u) even 

When only particles of one type are present we have 

a(k) = O, b(k) = kd, and f =  8(r - kd)  (14) 

4. THE TOTAL DISTRIBUTION FUNCTION 

Let I: P x f~ --> f~ be the natural imbedding under which the test pulse 
becomes indistinguishable from the other pulses. The total distribution 
funct ionf(q,  v, ~, t ]~, 9, g, f = 0) is the probability density of finding, at the 
time t, a particle at (q, v, ~) in the image, under I, of the uncorrelated state 
with the test pulse at (~, ~, if). 

Since our system has decaying correlations both in position and time (v~ 
it follows that for any ~Tfconverges, as q--> 0% or as t--> o% to p,h(v). We 
denote by ~/(k, v, ~, t]g, ~) the Fourier transform in q (in the distributional 
sense) of 

~(q, v, ~r, t[9, ~) - f (q,  v, or, tI~ = O, 9, ~, i = O) - poh(v) 
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It is easy to see that, in terms of the reduced description, 

~7(k, v, ~, t[~, ~) = P(dx,  dr[g, ~)E(x~e~e~(t)lx, v; O, ~, ~) (15) 
o| 

Here P(dx,  dvle, ~) is the probability of finding a pulse in the "region"  
dx dv given that there is a pulse at (~ = 0, ~, ~), and E(. 1.) denotes the 
expectation value for a pulse that is known to be at (x, v) at t = 0, with the 
additional knowledge that there is a pulse at (~ = 0, ~, v)(t = 0). 

For the uncorreiated s ta te  

P(dx,  drip, ~) = [3(x) 3(v - ~) + nh(v)] dx dv (16) 

Let M ( t )  denote the index of the particle on which the above-mentioned 
pulse is located at the time t. Then, in Eq. (15) 

q(t) = x + tv + DM(o (17) 

To find the distribution of M(t ) ,  notice that in any configuration it 
equals the number of collisions that an imaginary pulse of velocity u = 
v + x / t  would undergo starting at x = 0. Its collision with the pulse v should 
be counted only if it is positive and with ~ only if it is negative (this is easily 
seen using Fig. 2). Therefore the variable ~r  defined by 

M ( t )  = M -  | - u) + | - v) (18) 

1, x > O  
| = 0, x ~< 0 

has the same distribution as the variable M discussed in Section 3, which 
corresponds to the velocity u. 

Repeating the procedure used in the last section, we obtain 

n(k, v, ,~, tl~, ~) 

f? f/ = (1/2~r) d-c f (? ,  k, a, ~) dx [nh(v) + 3(x - vt) $(v - fi)] 
o| 

• [exp(ikx)]F(nt, .r, x / t )  exp{iz[O(x - vt) - O(gt - x)]} (19) 

t J 

//'" \ 
0 x 

Fig. 2. The reduced trajectory of  the imaginary pulse. ~r  -- | - u) is the index of  the 
particle to its left. 
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This is in agreement with the result of Ref. 3, as seen by substituting f = 
3@ - kd), which corresponds to the system of identical rods, i.e., when 
po = 0 except for one value of or. 

We find that the expression for ~ in a mixture has a strikingly simple 
relation to its value in a one-component system. Let us denote by ~fl(k, v, t]g) 
the value of the second integral in (19). For any given k it gives the function 
for a one-component system of rods with diameter d = r/k. We can rewrite 
(19) as 

fo 2~ 
�9 /(k, v, ~, t[~, ~) = (1/2rr) drf(r ,  k, ~, ~)~fl(k, v, tlg) (20) 

i.e., ~ is given as a time-independent average of ,7 ~ over various diameters. 
The "weight f u n c t i o n " f  satisfies the normalization condition 

(1/27r) dr ~ , f ( r ,  k, or, g) = 1 (21) 

f as a function of r reflects the additional smoothing that results from the 
variability of the diameters. It is smooth (analytic) except for systems in which 

do=-d 

e.g., if the various particles differ only by color or flavor. For such systems 

f (r ,  k, or, if) = [3(~, if) - po/p] + (p~/p) 8(r - kd) (22) 

When (22) is substituted into (20) we obtain, for do = d, 

~(k, v, ~, rig, ~) = Z ( k ,  v, t I~)[~((~, ~) - p,/p] 

+ (po/p)~7~ v, t[g) (23) 

Here f (k ,  v, t 1~) is the Fourier transform of f~(q, v, t ]0, g, 0) and 
~/~ v, t ]g) is the value of V in a one-component system with diameter d and 
density p. 

5. DENSITY  C O R R E L A T I O N  F U N C T I O N S  

Our results may be used to compute the van Hove time-dependent two- 
particle density correlation function. Let G(r, t, ~, ~) be the probability 
density, in an equilibrium state, of finding in two observations, separated by 
a time t, particles each in a specified position with separation r. Clearly, 

(24) 
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Its space-time Fourier transform, which for real systems can be measured 

with 

a(r) = n(1 - cos ~'), /3(k, r) = k + n sin ~- (28) 

td(v) is discontinuous at the points at which h(v) has ~-function singularities. 
At such points the discontinuous part in the denominator in (27) should be 
interpreted as 

[ ~ ( ~ ) t , ' ( v + )  - i[3(k, ~ ) ] [ ~ ( , ) t , ' ( v - )  - i/3(~, ~)1 

The derivation of Eq. (27) follows closely that of Eqs. (2.23) and (2.19) 
of Ref. 3 [which are recovered by the substitutionf(r, k, a, a) = 8(r - kd)] .  
Use is made there of the relation 

tz"(v) = 2h(v) (29) 

S may be obtained by 

S ( k ,  % or, ~) = (tfir) Re 2(k, i% ~r, ~) (30) 

by coherent neutron scattering, is 

S ( k ,  03, 

= ( 1 / 2 1 r )  f dte-'~ dv f aO,(k, tlO, (2,) 
Our explicit result for ~ is in a simple relation, given by Eq. (20), to the 

corresponding function for a system of identical rods. This relation holds for 
all quantities that, like G and S, depend linearly on 7. For example, the 
Fourier-Laplace transform of G, 

j0 f ~ 2(k,  s, ~, a)  = dt e - u  dr dk '[G(r,  t, ~, a)  - p~ps] (26) 
~ - o o  

can be brought to the form 

2(k, s, ~, a) 
_ 1 (2~ 
- ~ J o  a ' f ( " k " ~ ' ~ ) ( - k ~ )  

f "_ h(v) 
x dv [a(~-)/d(v) - i[3(k, r)]2[S - ifl(k, r)(v  - vo) + a(r)/z(v)] 

oo 

_ 1 ~.2,~ k 2 
- ~ Jo & f ( ~ '  ~' '~' ~) 2 ~ ( - )  

f ~ dv (27) 
x _ ~ Is - i~(k,  ~)(v - V o )  + ~ ( , ) ~ ( v ) p  
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In systems of rods of constant diameter the presence of discrete velocities 
[i.e., g-singularities in h(v)] results, as was noted in Ref. 3, in damped oscilla- 
tion modes in x(k, t). For any system in which the diameters are not strictly 
constant this feature is erased by the averaging with respect to ~-. 

6. KINETIC B E H A V I O R  

In Ref. 3, LPS studied the time evolution of the function f for a one- 
component system of hard rods. They denote by T(t) the operator whose 
kernel, in the (x, v) space, is given by f ( . ,  t I .). Now, T(t) applied to the 
distribution of the test particle gives the one-particle correlation function, at 
the time t, in the corresponding uncorrelated state. T(t) commutes with 
translations and in the Fourier-transform representation is given by operators 
To(t; k, d) which act in the v space. By the subscript we indicate that the 
operator corresponds to a system of rods of a constant diameter d. It is easily 
seen from Eq. (20) that the corresponding operator in (v, e) space is 

fo 2~ 
T(t; k) = (1/2~r) dr R(k, ~-)T0(t; k, r/k) (31) 

where R(k, r) is the operator, in the cr space, whose kernel i s f ( r ,  k, c~, g) and 
To acts, as explained above, only on the v component. 

LPS c3~ found that, surprisingly, 

To(t; k, d) = [exp(itBk,a)]To(O; k, d) (32) 

with a time-independent collision operator B. 
This property no longer holds for general systems considered by us, as 

may be guessed from the above expression for T(t; k). 
A similar difference occurs in the kinetic behavior of the pulse self- 

distribution. This, however, is a simple consequence of  the fact that the 
motion of a single pulse is Markovian in the system of equal diameters, 
where subsequent collisions of a pulse are independent, and non-Markovian 
if the acquired information about the diameters of other particles becomes 
nontrivial. 
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